Состав углеродистая сталь: марки и классификация, состав, обозначения

Содержание

Углеродистая сталь — состав, свойства, применение и маркировка

Область применения углеродистой стали широка – она используется для создания инструментов, из нее изготавливаются несущие конструкции и элементы для машиностроения. В настоящее время это один из самых востребованных видов стали, так как она обладает уникальными свойствами. Ее эксплуатационные и технические свойства определяются компонентами и их соотношением в составе.

Состав

steelДля плавки стали используется углерод и дополнительные элементы. В зависимости от будущего назначения к материалу предъявляются определенные требования: твердость, пластичность, текучесть и т.д. Корректировку этих параметров можно осуществлять с помощью изменения % содержания углерода.

Его соотношение к общему объему является одним из основных условий разделения стали на виды.

Их отличительные качества и особенности описаны в нормативных документах:

  • Обыкновенного качества – ГОСТ 380-85.
  • Конструкционная – ГОСТ 380-88.
  • Инструментальная – ГОСТ 1435-54 и ГОСТ 5952-51.

Содержание углерода определяет показатель твердости. Чем его больше – тем прочее будет изделие. Однако нужно учитывать, что одновременно с этим возрастает хрупкость.

В зависимости от этого показателя сталь разделяют на несколько видов:

  • Низкоуглеродистая – до 0,25%. Отличается хорошей пластичностью, относительно легко поддается деформации, как в холодном состоянии (годна для холодной ковки), так и под воздействием высоких температур.
  • Среднеуглеродистые – от 0,3% до 0,6%. Обладает достаточной прочностью, но также имеет хорошие показатели пластичности и текучести, что важно для обработки. Область применения – элементы конструкций, эксплуатация которых подразумевает нормальные условия.
  • Высокоуглеродистые – от 0,6% до 1,4%. Из нее изготавливают высокопрочный инструмент, приборы для измерения.

Каждый из этих видов стали имеет определенную область применения.

sostav

Обыкновенного качества

steel-2Это самый востребованный вид стали в настоящее время. Она производится в виде проката – листов, прутьев, швеллеров и балок. Благодаря своим свойствам может использоваться в качестве опорных конструкций, элементов машиностроения.

Для того чтобы узнать свойства определенного вида углеродистой стали обыкновенного качества. нужно знать принцип ее маркирования.

Обозначение всегда должно соответствовать ГОСТу. В названии указывается вид металла – СТ. Затем идет цифровой номер, определяющий содержание перлита и углерода. Чем больше номер – тем прочнее изделие. Нумерация может варьироваться от 0 до 6. Затем в названии указывается способ раскисления — СП – спокойная; ПС – полуспокойная; КП – кипящая.

Помимо этого углеродистая сталь имеет разделение на три подвида.

  • primenenie
    А – ее химический состав не регламентируется. Главным показателем являются механические свойства. Она не проходит предварительную стадию обработки давлением. Не предназначена для сварки.
  • Б – ее химический состав должен соответствовать нормативной документации. Изделия из этого материала могут подвергаться обработке – штамповке, ковке и т.д. Но при этом возможно изменение механических свойств. Некоторые сорта можно подвергать термическому воздействию.
  • И – наиболее качественный вид материала. Для этих марок характерны механические свойства группы «А» и гарантированный химический состав группы «Б». Конструкции могут свариваться между собой.

В маркировке группа «А» не указывается. Если же сорт материала соответствует группам «Б» или «В» — эти буквы указывают в начале маркировки. При использовании в составе марганца с повышенным содержанием в названии марки используют букву «Г». Пример: БСт3Гпс – сталь группы «Б», с содержанием углерода, соответствующего обозначению «6», с добавлением марганца в полуспокойном состоянии.

Качественная

При изготовлении этих сортов стали предъявляются повышенные требования, как к химическому составу, так и к механическим свойствам. Помимо этого регламентируется содержание вредных компонентов.

  • Сера – не более 0,04%.
  • Фосфор – не более 0,035%.

instrumentalnoy-stali

Данные сорта обозначаются буквой «У». Следующие за ней цифры указывают % содержание углерода (в сотых долях процента). Такие марки стали используются для изготовления инструмента, ответственных элементов в машиностроении, а также при производстве точных измерительных приборов.

  • У7 – применяется для производства зубил, штампов, кузнечного инструмента, молотов.
  • У8 и У8Г (с содержанием марганца) – пробойники, ножи по металлу, инструмент, предназначенный для обработки камня.
  • У9 – инструмент для деревообработки, кернеры, штемпеля.
  • У10 и У11 – метчики, развертки, плашки, полотна для ножовок.
  • У12 и У13 – резцы для обработки твердого металла, сверла.

table-21

На что еще нужно обращать внимание при выборе углеродистой стали? Важно помнить, что чем лучше показатель твердости, тем более хрупким будет изделие. Так, для инструментальных сортов качественной стали характерна хорошая механическая прочность, низкая текучесть и пластичность.

Химический состав и классификация сталей по назначению

Сталь является металлом, широко используемым в машиностроении, самолетостроении, строительстве и других отраслях производства. Популярность материала обусловлена сочетанием его отличных технологических и физико-механических свойств. К сталям относят железоуглеродистые соединения, химический состав которых предполагает содержание углерода в количестве менее 2,14%, а помимо этого компонента присутствуют вредные и полезные примеси.

Сочетание характерной циклической прочности в статическом состоянии и жесткости достигается путем изменения содержания углерода и легирующих компонентов. Различные качества стали получаются в результате применения в производстве определенных химических и термических технологий.

Классификация углеродистых сталей

Углеродистые сплавы подразделяют по следующим характеристикам:

  • количеству содержащегося углерода;
  • назначению;
  • структуре в состоянии равновесия;
  • степени раскисления.

В зависимости от количества углерода материал делят на категории:

  • высокоуглеродистые — больше 0,7%;
  • среднеуглеродистые — 0,3−0,7%;
  • низкоуглеродистые — до 0,3%.

В результате полученного качества стальные сплавы делят на:

  • высококачественные;
  • обыкновенные;
  • качественные.

Из металла в жидком состоянии удаляют кислород для уменьшения хрупкости при горячем формировании, этот процесс называется раскислением. По характеру отвердевания и степени раскисления материал классифицируется как кипящий, полуспокойный и спокойный.

В зависимости от полученной структуры в равновесном состоянии материал делят на:

  • эвтектоидные, характеризующиеся структурой из перлита;
  • доэвтектоидные, содержащие перлит и феррит;
  • заэвтектоидные — со вторичным цементитом и перлитом.

По назначению использования металл подразделяется на группы:

  • конструкционные (улучшаемые, высокопрочные, цементируемые, рессорно-пружинные), применяемые в строительстве, приборостроении, машиностроении и самолетостроении;
  • инструментальные для штампов горячей (200˚С) и холодной прессовки, измерительного и режущего инструмента).

Конструкционные металлы

Обыкновенные по качеству стали выпускаются в виде балок, прутков, листового материала, швеллеров, труб, уголка и другого проката и делятся на категории А, В, Б. В наименовании присутствуют буквы Ст и цифра, обозначающая номер марки, с увеличением значения числа увеличивается показатель содержания углерода. Для материалов категорий В и Б, но не А, перед Ст ставится искомая буква для указания принадлежности.

Группа раскисления обозначается СП, ПС, КП — спокойные, полуспокойные и кипящие, соответственно. Категория, А используется для производства деталей, получаемых холодной обработкой, Категория Б применяется для элементов, изготавливаемых сваркой, ковкой, по методу термической обработки. Стали В по стоимости дороже предыдущих категорий, используются для производства ответственных конструкций и сварочных элементов.

Из всех трех категорий обыкновенных углеродистых сталей делают металлические конструкции и детали в приборостроении и машиностроении со слабой нагрузкой, в тех случаях, когда работоспособность обусловлена требуемой жесткостью. Металлы в виде арматуры вкладывают в железобетонные конструкции. Из категорий В и Б делают сварные фермы, рамы и металлические узлы, которые затем укрываются цементным раствором.

Среднеуглеродистые группы с большим запасом прочности используют для рельсов, колес железнодорожных вагонов, шкивов, валов и шестеренок механических приспособлений и машин. Некоторые материалы этой группы разрешаются к термической обработке.

Качественные стали углеродистой группы применяют в слабонагруженных деталях, они маркируются цифрами от 05 до 85, обозначающими процентную концентрацию углерода. К углеродистым материалам относятся стали с увеличенным содержанием марганца, которые отличаются повышенной прокаливаемостью. За счет изменения количества углерода, марганца и выбора соответствующего способа термической обработки получают различные технологические и механические качества.

Низкоуглеродистые сплавы отличаются хорошей пластичностью при холодной обработке, но имеют небольшой запас прочности. Их выпускают в виде листов, материал мягкий, легко штампуется, тянется, сюда относят жесть и металл для эмалированных предметов быта. При цементировании сталей в производстве увеличивается показатель поверхностной прочности, что дает возможность изготавливать малонагруженные колеса зубчатой передачи, кулачки и др.

Среднеуглеродистые металлы и аналогичные составы с увеличенным процентом марганца отличаются средними показателями прочности, но пластичность и вязкости при этом снижается. По условиям работы запчастей определяется метод усиления сталей в виде нормализации, низкоотпускной и ТВЧ закалки и др. Из них делают высокопрочную проволоку, рессоры, пружины и повышенными требованиями к износостойкости.

Автоматные виды

Эти материалы маркируются литерой, А и цифрами, указывающими на концентрацию углерода в сотых процента. Легирование свинцом добавляет букву С после А. Введение селена, марганца, теллура позволяет сократить применение режущего инструмента при обработке. На степень обрабатываемости также влияет добавка фосфора, серы и кальция, последний вводится в виде силикальцита в жидкий сплав.

Содержание фосфора и серы снижает показатели качества, сера снижает антикоррозионные свойства, сульфидов ведут к нарушению однородности металла. Их этого класса сталей делают детали сложной формы и поверхности, крепежные элементы, рассчитанные на небольшую нагрузку.

Легированные типы

К ним относят металлы с содержанием легирующих добавок в количестве до 2,5%. Буквенные обозначения марки включают литеры, указывающие на определенные примеси, а цифра после них говорит о процентном содержании элемента. Если его содержание менее 1,5%, то в обозначении добавка не ставится.

Содержание углерода в этой группе сталей нормируется количеством 0,1−0,3%, к основным свойствам после термической, химической обработки и низкого отпуска после закалки относят:

  • высокую твердость материала на поверхности;
  • уменьшенную прочность средних слоев и повышенную вязкость.

Стали используют для производства деталей машин и приборов, предназначенных для работы с ударными и переменными нагрузками в условиях повышенной изнашиваемости.

Цементируемые материалы

Для повышения показателей твердости, выносливости при контакте, износостойкости, прокаливаемости используют хром, магний, никель, последний элемент повышает вязкость и снижает предел хладноломкости. Цементируемые составы делят на две группы:

  • средней прочности с порогом текучести меньше 700 МПа;
  • повышенной прочности с аналогичным показателем в пределах 700−1100 МПа.

По содержанию добавок различают виды:

  • хромистые составы и хромованадиевые, цементируемые на глубину менее 1,5 мм;
  • хромомарганцевые составы включают титана 0,06%, марганца и хрома по 1%, имеют особенность внутренне окисляться при газовой цементации, что ведет к уменьшению прочностных характеристик;
  • хромоникельмолибденовые сплавы являются представителями мартенситного класса и отличаются уменьшенным короблением, что обусловлено воздушной закалкой, легированием редкоземельными металлами, повышающими прокаливаемость, статическую прочность и сопротивление ударам.

Пружинно-рессорные сплавы

Детали работают в условиях упругой деформации и подергаются циклическим нагрузкам, поэтому от сталей требуются высокие показатели текучести, пластичности и сопротивления излому. В состав входят:

  • марганец — менее 1,2%;
  • кремний — менее 2,7%;
  • ванадий — до 0,26%;
  • хром — до 1,25%;
  • никель — менее 1,75%;
  • вольфрам — менее 1,2%.

В процессе обработки уменьшаются размеры зерен, увеличивается сопротивление металла. Для транспортного производства особо ценными являются кремнистые сплавы, если технология не позволяет им в производстве обезуглероживаться, то выносливость материала остается на уровне заданных параметров. Введение ванадия, хрома, ванадия, никеля помогает затормозить излишний рост зерен при нагревании и повысить прокаливаемость. Из высокоуглеродистых холоднотянутых проволок, аустенитных нержавеек и высокохромистых мартенситных сталей, также делают пружины и другие упругие элементы.

Инструментальные стали

Для обеспечения надежной работы инструментов сталь должна обладать специальными свойствами, которые проявляются у каждой группы материалов по-разному в зависимости от производства и технологии введения добавок.

Шарикоподшипниковые формы

Сплавы при производстве очищаются от неметаллических примесей, использование технологии вакуумно-дугового или электрошокового переплава уменьшает пористость металла. При производстве подшипников и их узлов применяют хромистые шарикоподшипниковые стали с добавками хрома. Дополнительное легирование осуществляется марганцем и кремнием с целью увеличить показатель прокаливаемости. Чтобы детали можно было изготавливать методом холодной штамповки и резать применяется отжиг металла на твердость.

Закалка деталей (роликов, шарикоподшипников и колец) проводится в масляной ванне при температуре 850−870˚С, их охлаждают с целью обеспечения стабильности до 25˚С перед отпуском. Так как подшипниковые и подобные элементы при эксплуатации испытывают сильные динамические нагрузки, то их делают из металлов с дальнейшей термической обработкой и цементацией.

Износостойкие виды

Сопротивление износу повышается с увеличением показателя поверхностной твердости материала. Для долговременной эксплуатации важны такие качества сплава:

  • сопротивление разрушению при абразивном трении;
  • долговременная эксплуатация в условиях высокого давления и ударных нагрузок.

Износостойкие металлы применяют при изготовлении гусеничных траков, дробильных плит камнедробильного оборудования, раздавливающих щек. Работа в таких условиях эффективна благодаря свойству сталей набирать прочность и твердость в условиях пластической холодной деформации, достигающей 70%. Добавки фосфора больше 0,027% приводят к увеличению хладноломкости сырья.

Литая сталь имеет структуру аустенита, у которого на границах зерен выделяется излишний марганца карбид, ведущий к уменьшению прочности и вязкости. Чтобы получить аустенитную однофазную структуру заготовки закаливают в водной среде при температуре около 1100˚С.

Сопротивляющиеся коррозии

Эти материалы используют для изготовления элементов приборов, работающих в условиях электрохимической коррозии, их называют нержавеющими. Стойкость к коррозии развивается после введения добавок, ведущих к образованию поверхностных пленок с хорошей адгезией к металлу. Эти слои уменьшают непосредственное взаимодействие сталей с внешними раздражающими факторами и повышают потенциал в электрохимической среде.

Нержавеющие металлы делят на хромоникелевые и хромистые. Хромистые составы используют для пластичных деталей, которые изготавливают штамповкой и методом сварки. Этот вид подразделяют на ферритные, мартенситно-ферритные и мартенситные сплавы. Для повышения сопротивления ударам их закаливают в масле при температуре около 1000˚С в условиях высокого отпуска с показателями температуры в пределах 600−800˚С.

Жаропрочные сплавы

Применяют для изготовления элементов, работающих при температуре выше 500˚С, составы низколегированные, содержащие до 0,25% С и других легирующих добавок: хрома, вольфрама, никеля. Закалка и нормализация осуществляется в масле при температуре около 890−1050˚С. Из перлитных сталей делают детали, подвергающиеся в работе режиму ползучести при малых нагрузках, например, паронагревательные трубы, арматура котлов с паром, крепежные детали.

Как влияет содержание углерода на свойства сталей

Содержание углерода и легирующих элементов определяет свойства углеродистых сталей. Состав сплава содержит железо, углерод, магний, кремний, марганец, серу и фосфор. Количество одного компонента по отношению к общей массе определяет вязкость, пластичность, прочность и твердость металла. Углеродистые стали классифицируют по химическому составу, способу изготовления, назначению и степени раскисления. Металлопрокат производят из разных марок стали. Компания «Стальмет» продает металлопродукцию из углеродистых сталей, соответствующих ГОСТу 380-2005 и 1050-2005.

Состав стали с углеродом

Технология производства не полностью удаляет примеси из стали. Они занимают малую процентную долю, но присутствуют во всех углеродистых сталях. Содержание углерода разделяет сталь на углеродистую и легированную. Углерод добавляют намеренно, чтобы изменить технические характеристики и механические свойства сталей. Наличие примесей зависит от выбранной плавки сталей. Процентное содержание разных элементов в составе стали:

  • железо — до 99 %;
  • углерод — до 2,14 %;
  • кремний — до 1 %;
  • марганец — до 1 %;
  • фосфор — до 0,6 %;
  • сера — до 0,5 %.

Сталь содержит незначительное количество водорода, кислорода и азота.


Какие свойства у стали с разным содержанием углерода?

Механические свойства стали зависят от количества углерода. Увеличение или снижение содержания углерода, даже в сотых долях процента, предопределяет сферу применения металла. Структура углеродистой стали меняется от содержания цементита и феррита. Когда в сталь добавляют больше углерода, сплав становится твердым, прочным и упругим. Когда уменьшают, улучшают ее пластичность и сопротивление удару.

В зависимости от того, сколько углерода в составе сплава, различают несколько видов стали:

  • Низкоуглеродистые содержат меньше 0,25 % углерода. Пластичные, но легко деформируемые. Обрабатываются в холодном состоянии и под действием высокой температуры.
  • Среднеуглеродистые — 0,3-0,6 %. Пластичные, текучие и среднепрочные. Из них изготавливают детали и конструкции, которые будут использовать в нормальных условиях.
  • Высокоуглеродистые — 0,6-2 %. Износостойкие, прочные и дорогие углеродистые стали с низкой вязкостью. Плохо поддаются сварке без предварительного разогрева обрабатываемой зоны до +225оС.

Низкоуглеродистые и среднеуглеродистые стали обрабатывать и варить проще, чем высокоуглеродистые.

Виды углеродистой стали по степени раскисления

У углеродистой стали разная степень раскисления. Бывают спокойные, кипящие и полуспокойные сплавы. Названия связаны с содержанием вредных примесей — оксидом железа. Чем меньше кислорода в сплаве, тем стабильнее и долговечнее стали. После разливки сталь выделяет газы и затвердевает.

В спокойных сталях кислород удален почти полностью, поэтому у них однородная структура и равномерное распределение состава. Полуспокойные чаще содержат 0,15-0,3 % углерода. Таким сталям свойственна неравномерная структура из-за частичного раскисления сплава. Больше всего кислорода у кипящих сталей. Такое раскисление приводит к разному химическому составу. В кипящих сталях много примесей: углерода, азота, серы и фосфора.


Чем отличаются инструментальные и конструкционные стали?

Сфера применения и способ изготовления — главные отличия сталей. Конструкционные углеродистые стали выплавляют в конвертерах и мартеновских печах. Они бывают высокого и обыкновенного качества. Их разделяют на группы А, Б и В. Маркируют соответственно буквами и цифрами. В обозначении буква говорит о группе стали, а цифры указывают на содержание углерода, увеличенное в 100 раз. Чем больше значение, тем прочнее сталь. Стали обыкновенного качества с повышенным содержанием марганца маркируются буквой «Г».

Сталь группы А поставляют по механическим свойствам, группы Б — по химическому составу, группы В — по механическим свойствам и химическому составу. Это означает, что сталь группы А обладает заявленными свойствами, а сталь группы Б отвечает нормативной документации.

Углеродистую инструментальную сталь выплавляют в мартеновской или электрической печи. Она бывает спокойной, полуспокойной и кипящей. Ее разделяют на качественную и высококачественную сталь. Доля примесей в качественной инструментальной стали регламентирована: серы должно быть не более 0,4 %, фосфора — не больше 0,6 %. Цифра в маркировке говорит о содержании углерода в сотых долях. Также она обозначает условный номер марки материала.


Сферы применения углеродистых сталей

Углеродистые стали обыкновенного качества используют для изготовления двутавра, уголка, швеллера, прута, листа и другого проката. В производстве инструментов и деталей для разных областей машиностроения применяют углеродистую сталь высокого качества.

Углеродистые инструментальные стали: марки, свойства, обозначение, применение

В машиностроении и других областях промышленности производственная деятельность заключается в выпуске заготовок и деталей, которые получаются путем механической обработки. Современные материалы могут обладать весьма высокими показателями твердости и прочности, за счет чего усложняется их обработка. Для того чтобы обеспечить быструю и качественную механическую обработку при изготовлении режущего инструмента или их кромки используются углеродистые инструментальные стали. Их особенность заключается в высокой стойкости к механическому воздействию.

Углеродистые инструментальные сталиУглеродистые инструментальные стали Углеродистые инструментальные стали

Подобные металлы также могут использоваться при выпуске ответственных деталей, к которым предъявляются высокие требования в плане прочности и твердости.

Основные характеристики

Рассматривая основные свойства инструментальной стали следует отметить нижеприведенные моменты:

  1. Низкая чувствительность к перегреву. При механической обработке снятие слоя материала с заготовки происходит за счет оказываемого требования. Нагрев металла приводит к изменению его основных качеств. Поэтому углеродистые инструментальные качественные стали не нагреваются даже при длительном трении с другими поверхностями.
  2. Низкая чувствительно к привариванию к обрабатываемым деталям. Из-за оказываемого давления при подаче инструмента на момент обработки заготовок зона трения может несущественно нагреваться, что становится причиной повышения пластичности некоторые материалов. Если инструментальная сталь будет привариваться при этом к поверхности возникнет дополнительное сопротивление и качество получаемой детали существенно снизиться.
  3. Для того чтобы упростить обработку металла его делают боле восприимчивой к обработке методом резки.
  4. Восприимчивость к прокаливанию также определяется особым химическим составом.
  5. Высокая пластичность в горячем состоянии позволяет получать заготовки метод плавления металла.
  6. Высокое сопротивление процессу обезуглероживания позволяет получить наилучший результат при проведении закалки или других процессом химико-термической обработки.
  7. Во время обработки может возникать ударная нагрузка, которая в большинстве случаев становится причиной образования трещин. Высококачественная углеродистая инструментальная сталь не имеет подобного недостатка.
  8. Износостойкость и высокая прочность, твердость поверхности.
Химический состав углеродистых инструментальных сталейХимический состав углеродистых инструментальных сталей

Химический состав углеродистых инструментальных сталей

Химический состав инструментальных углеродистых сталей во многом определяют основные эксплуатационные качества металла.

Применение

Применение инструментальных углеродистых сталей во многом зависит от химического состава. Чаще всего применяется для получения:

  1. Режущего инструмента. На протяжении многих лет для изготовления инструментов использовали обычную сталь, которая в процессе работы могла нагреваться и быстро изнашиваться. На тот момент устанавливались станки токарной и сверлильной группы, которые могли проводить обработку только при низкой скорости и невысокой подачи. Появление современного оборудования, в частности станков с ЧПУ, привело к повышению требований, предъявляемых к инструменту. Только появление инструментальной стали и твердых сплавов позволило полностью раскрыть потенциал современного оборудования. Также не стоит забывать, что для получения качественных поверхностей должна существенно увеличиваться скорость подачи, повысить производительность можно при увеличении подачи. Современные режущие инструменты могут выдерживать неоднократные циклы нагрева и охлаждения, срок эксплуатации при этом увеличивается в несколько десятков раз.
  2. Высококачественных деталей. Примером можно назвать конструкцию ДВС, которая имеет поверхности с точными размерами и шероховатостью. Для того чтобы при эксплуатации подвижные элементы не меняли свою форму по причине нагрева их изготавливают из инструментальной стали.
  3. Приборов, применяемых для проведения точных измерений. Для получения небольших деталей с точностью линейных размеров в несколько сотен миллиметров заготовка не должна нагреваться или деформироваться за счет оказываемого давления со стороны режущего инструмента.
  4. Литейной прессформы, которая должна выдерживать существенное давление.
Применение углеродистых инструментальных сталей в зависимости от маркиПрименение углеродистых инструментальных сталей в зависимости от марки

Применение углеродистых инструментальных сталей в зависимости от марки

Для изготовления деталей больше всего подходить марка У7 или У7А, для изготовления режущего и другого инструмента У10 или У12. Данная закономерность связана с тем, что для получения режущего инструмента должны использоваться более твердые металлы.

Маркировка углеродистых инструментальных сталей в данном случае указывает на процентное содержание углерода и наличие других примесей.

Свойства углеродистой инструментальной стали во многом определяются концентрацией углерода – чем больше, тем поверхность тверже, но повышается и хрупкость.

При холодном прессовании могут применяться марки У10 – У12. Проведенные тесты указывают на то, что их твердость составляет 57-59 HRC. Среди особенностей отметим:

  1. Достаточно высокую вязкость.
  2. Высокий уровень сопротивления деформациям пластического типа.
  3. Повышенная износостойкость.

Если габариты инструмента большие, то могут применяться сплавы, в состав которых включаются полезные примеси.

Классификация

Принято разделять инструментальные качественные стали на 5 основных групп:

  1. Износостойкие, теплостойкие и высокотвердые – группа, представленная быстрорежущей легированной сталью. Кроме этого в данную группу относят сплавы с ледебуритной структурой, которая характеризуется повышенной концентрацией углерода (более 3%). Применение инструментальных углеродистых сталей данной группы заключается в изготовлении инструментов, которые могут подвергаться воздействию высокой температуры из-за установки высоких скоростей резания.
  2. Теплостойкие и вязкие стали представлены сплавом, который имеет в своем составе молибден, хром и вольфрам. Химический состав инструментальной углеродистой стали данной группы характеризуется низким значением концентрации углерода.
  3. Нетеплостойкие, вязкие и высокотвердые стали имеют небольшое количество примесей и среднее значение углерода. Данной группе характерен невысокий показатель прокаливаемости.
  4. Средняя теплостойкость, высокая твердость, износостойкость – качества, свойственные металлам с 2-3% углерода и 5-12% хрома.
  5. Низкая устойчивость к теплу и высокая твердость характерны сталям с заэвтектоидной структурой. В большинстве случае они не имеют легирующих элементов или их концентрация очень мала. Высокий уровень твердости обеспечивается за счет высокой концентрации углерода.

Высококачественная инструментальная сталь может подвергаться дополнительной химико-термической обработке для изменения состава и перестроения кристаллической решетки, за счет чего и достигаются необычные эксплуатационные качества.

Изделия из углеродистой инструментальной сталиИзделия из углеродистой инструментальной стали

Изделия из углеродистой инструментальной стали

Твердость считается основным параметром, высокое значение которого не позволяет использовать сталь при изготовлении инструментов или деталей, подвергающихся во время эксплуатации ударам или вибрации. Эта рекомендация связана с тем, что при увеличении концентрации углерода повышается твердость, но вязкость уменьшается. Уменьшение вязкости становится причиной повышения хрупкости структуры, в результате воздействия ударной нагрузки могут появляться трещины и другие дефекты, поверхность откалываться.

Классификация по уровню твердости выглядит следующим образом:

  1. Высокий показатель вязкости и пониженная твердость характерны металлам, которые в составе имеют не более 0,4-0,7% углерода.
  2. Высокая износостойкость и твердость поверхностного слоя достигаются при насыщении структуры металла углеродом до 0,7-1,5%.

Больший показатель концентрации углерода делает металл очень хрупким, что не позволяет его использовать в качестве материала при изготовлении инструмента. Кроме этого легирующие элементы способны повысить вязкость и снизить хрупкость при условии большой концентрации углерода. В некоторых случаях проводится химическая обработка для обеспечения износостойкой поверхности и вязкого основания, за счет чего инструмент или деталь приобретает высокие эксплуатационные качества.

Маркировка

Углеродистая инструментальная сталь марки могут иметь как цифры, так и буквенные обозначения. В большинстве случаев маркировка инструментальных углеродистых сталей в самом начале имеет букву «У», которая и указывает на тип металла. Обозначение углеродистой инструментальной стали также имеет следующие особенности:

  1. Первое цифирное обозначение после буквы указывает в десятых долях количество углерода в отношении всего состава.
  2. Встречается и буква «А», идущая за цифрой, обозначающей концентрацию углерода в составе. Она указывает на то, что углеродистая инструментальная сталь марка имеет высокое качество.
  3. Для обозначения группы рассматриваемой стали может применяться буква «Р». В данном случае после этого обозначения идет буква, которая указывает на концентрацию вольфрама.
  4. Другие легирующие вещества также указываются соответствующей буквой, после которой идет цифра для обозначения концентрации.
  5. Принято считать, что у стали и рассматриваемой группы в обязательном порядке в составе есть хром, но его концентрация не более 4%. Если после соответствующего буквенного обозначения указывается цифра, то концентрация этого вещества уточняется.

Также можно встретить маркировку инструментальных углеродистых сталей начинающуюся с цифры. Примером приведем распространенные сплавы 9Х или 6ХГВ. Первая цифра также указывает на концентрацию в составе углерода, следующие буквы на легирующие элементы. Если после буквы легирующего элемента не указывается цифра, то принято считать, что их концентрация равна 1%. Кроме этого сама маркировка может начинаться с буквенных обозначений, свойственных легирующим элементам – это указывает на то, что концентрация.

Углеродистая сталь

: свойства, примеры и применение

Углеродистая сталь — это железоуглеродистый сплав, содержащий до 2,1 мас.% Углерода. Для углеродистых сталей не существует минимального указанного содержания других легирующих элементов, однако они часто содержат марганец. Максимальное содержание марганца, кремния и меди должно быть менее 1,65 мас.%, 0,6 мас.% И 0,6 мас.% Соответственно.

Виды углеродистой стали и их свойства

Углеродистую сталь

можно разделить на три категории в зависимости от содержания углерода: низкоуглеродистая сталь (или низкоуглеродистая сталь), среднеуглеродистая сталь и высокоуглеродистая сталь [1].Их содержание углерода, микроструктура и свойства сравниваются следующим образом:

Содержание углерода (мас.%)

Микроструктура

Недвижимость

Примеры

Низкоуглеродистая Сталь

<0,25

Феррит, перлит

Низкая твердость и стоимость.Высокая пластичность, вязкость, обрабатываемость и свариваемость

AISI 304, ASTM A815, AISI 316L

Среднеуглеродистая Сталь

0,25 — 0,60

Мартенсит

Низкая прокаливаемость, средняя прочность, пластичность и вязкость

AISI 409, ASTM A29, SCM435

Высокоуглеродистая Сталь

0.60 — 1,25

Перлит

Высокая твердость, прочность, низкая пластичность

AISI 440C, EN 10088-3

Низкоуглеродистая сталь

Низкоуглеродистая сталь является наиболее широко используемой формой углеродистой стали. Эти стали обычно имеют содержание углерода менее 0,25 мас.%. Их нельзя закалить термической обработкой (с образованием мартенсита), поэтому обычно это достигается холодной обработкой.

Углеродистые стали обычно относительно мягкие и имеют низкую прочность.Однако они обладают высокой пластичностью, что делает их идеальными для обработки, сварки и низкой стоимостью.

Высокопрочные низколегированные стали (HSLA) также часто классифицируются как низкоуглеродистые стали, однако они также содержат другие элементы, такие как медь, никель, ванадий и молибден. В совокупности они составляют до 10 мас.% От содержания стали. Высокопрочные низколегированные стали, как следует из названия, обладают более высокой прочностью, что достигается термической обработкой. Они также сохраняют пластичность, благодаря чему их легко формовать и обрабатывать.HSLA более устойчивы к коррозии, чем простые низкоуглеродистые стали.

Сталь среднеуглеродистая

Среднеуглеродистая сталь имеет содержание углерода 0,25–0,60 мас.% И марганца 0,60–1,65 мас.%. Механические свойства этой стали улучшаются посредством термообработки, включающей аутентификацию с последующей закалкой и отпуском, что придает им мартенситную микроструктуру.

Термическая обработка может выполняться только на очень тонких сечениях, однако могут быть добавлены дополнительные легирующие элементы, такие как хром, молибден и никель, чтобы улучшить способность стали подвергаться термообработке и, таким образом, упрочняться.

Закаленные среднеуглеродистые стали обладают большей прочностью, чем низкоуглеродистые стали, однако это происходит за счет пластичности и вязкости.

Высокоуглеродистая сталь

Высокоуглеродистая сталь содержит 0,60–1,25 мас.% Углерода и 0,30–0,90 мас.% Марганца. Он имеет самую высокую твердость и ударную вязкость среди углеродистых сталей и самую низкую пластичность. Высокоуглеродистые стали очень износостойкие, поскольку они почти всегда подвергаются закалке и отпуску.

Инструментальные стали и штамповые стали — это типы высокоуглеродистых сталей, которые содержат дополнительные легирующие элементы, включая хром, ванадий, молибден и вольфрам. Добавление этих элементов приводит к получению очень твердой износостойкой стали, что является результатом образования карбидных соединений, таких как карбид вольфрама (WC).

Производство и обработка

Углеродистая сталь

может производиться из переработанной стали, первичной стали или их комбинации.

Чистая сталь производится путем объединения железной руды, кокса (полученного путем нагревания угля в отсутствие воздуха) и извести в доменной печи при температуре около 1650 ° C.Расплавленное железо, извлеченное из железной руды, обогащается углеродом из горящего кокса. Остальные примеси соединяются с известью, образуя шлак, который плавает поверх расплавленного металла, откуда его можно извлечь.

Полученная жидкая сталь содержит примерно 4 мас.% Углерода. Затем это содержание углерода снижается до желаемого количества в процессе, называемом обезуглероживанием. Это достигается за счет пропускания кислорода через расплав, который окисляет углерод в стали с образованием моноксида углерода и диоксида углерода.

Примеры и приложения

Сталь низкоуглеродистая

Низкоуглеродистая сталь часто используется в деталях кузова автомобилей, конструктивных формах (двутавровые балки, швеллер и уголки), трубах, конструктивных элементах и ​​элементах мостов, а также пищевых банках.

Сталь среднеуглеродистая

Благодаря своей высокой прочности, износостойкости и вязкости, среднеуглеродистые стали часто используются для изготовления железнодорожных путей, колес поездов, коленчатых валов, зубчатых колес и деталей машин, требующих такого сочетания свойств.

Высокоуглеродистая сталь

Благодаря высокой износостойкости и твердости высокоуглеродистые стали используются в режущих инструментах, пружинах, проволоке высокой прочности и штампах.

Сравнение свойств и областей применения различных марок

Примеры, свойства и области применения различных углеродистых сталей сравниваются в следующей таблице.

Тип

Название AISI / ASTM

Содержание углерода (мас.%)

Предел прочности (МПа)

Предел текучести (МПа)

Пластичность (% удлинения на 50 мм)

Приложения

Низкая

1010

0,10

325

180

28

Автомобильные панели, гвозди, проволока

Низкая

1020

0.20

380

205

25

Трубы конструкционные из листовой стали

Низкая

A36

0,29

400

220

23

Строительный

Низкая

A516 Класс 70

0.31

485

260

21

Сосуды низкотемпературные напорные

Средний

1030

0,27 — 0,34

460

325

12

Детали машин, шестерни, переключатели, оси, болты

Средний

1040

0.37 — 0,44

620

415

25

Коленчатые валы, муфты, детали с холодной головкой.

Высокая

1080

0,75 — 0,88

924

440

12

Музыкальный провод

Высокая

1095

0.90 — 1,04

665

380

10

Пружины, режущие инструменты

.Углеродистая сталь

— Специальная сталь Marco

Существует четыре типа углеродистой стали в зависимости от количества углерода, присутствующего в сплаве. Стали с низким содержанием углерода мягче и легче формуются, а стали с более высоким содержанием углерода тверже и прочнее, но менее пластичны, и их становится труднее обрабатывать и сваривать. Ниже приведены свойства марок углеродистой стали:

  • Низкоуглеродистая сталь: Состав от 0,05% -0,25% углерода и до 0.4% марганца. Также известный как низкоуглеродистая сталь, это недорогой материал, которому легко придать форму. Науглероживание не так твердо, как стали с более высоким содержанием углерода, но может повысить твердость поверхности.
  • Среднеуглеродистая сталь: Состав: 0,29–0,54% углерода и 0,60–1,65% марганца. Среднеуглеродистая сталь пластичная и прочная, с долговечными свойствами.
  • Высокоуглеродистая сталь: Состав: 0,55–0,95% углерода и 0,30–0,90% марганца. Он очень прочный и хорошо сохраняет память формы, что делает его идеальным для изготовления пружин и проволоки.
  • Очень высокоуглеродистая сталь: Состав углерода 0,96–2,1%. Высокое содержание углерода делает его чрезвычайно прочным материалом. Из-за своей хрупкости этот сорт требует особого обращения.

A36 Мягкая сталь

Сталь

ASTM A36 является наиболее доступной из горячекатаных сталей. Он обычно доступен в виде квадратного стержня, прямоугольного стержня, а также стальных профилей, таких как двутавровые балки, двутавровые балки, уголки и швеллеры. Процесс горячей прокатки означает, что поверхность этой стали будет несколько шероховатой.Обратите внимание, что его предел текучести также значительно меньше 1018 — это означает, что он будет изгибаться намного быстрее, чем 1018. Наконец, обработка этого материала заметно сложнее, чем сталь 1018, но стоимость обычно значительно ниже.

ASTM A36 Мягкая (низкоуглеродистая) сталь

Минимальные свойства Предел прочности при растяжении, фунт / кв. Дюйм 58,000 — 79,800
Предел текучести, фунт / кв. Дюйм 36,300
Удлинение 20.0%
Химия Железо (Fe) 99%
Углерод (C) 0,26%
Марганец (Mn) 0,75%
Медь (Cu) 0,2%
Фосфор (P) 0,04% макс.
Сера (S) 0,05% макс.

1018 Мягкая сталь

Сплав 1018 является наиболее распространенным из холоднокатаных сталей.Обычно он доступен в виде круглого стержня, квадратного стержня и прямоугольного стержня. В нем удачно сочетаются все типичные свойства стали — прочность, некоторая пластичность и сравнительная простота обработки. По химическому составу она очень похожа на горячекатаную сталь A36, но процесс холодной прокатки обеспечивает лучшую чистоту поверхности и лучшие свойства.

1018 Мягкая (низкоуглеродистая) сталь

Минимальные свойства Предел прочности при растяжении, фунт / кв. Дюйм 63,800
Предел текучести, psi 53,700
Удлинение 15.0%
Твердость по Роквеллу B71
Химия Железо (Fe) 98,81 — 99,26%
Углерод (C) 0,18%
Марганец (Mn) 0,6 — 0,9%
Фосфор (P) 0,04% макс.
Сера (S) 0,05% макс.

1144 (Стрессоустойчивый эквивалент) сталь

Этот материал на самом деле довольно крутой, по крайней мере, для стали.Это более прочный сплав, чем 1018 или A36, но, кроме того, он также имеет улучшенную пластичность. Однако главной особенностью стали 1144 является то, что она имеет очень низкую деформацию или коробление после механической обработки благодаря сочетанию ее химического состава, метода производства и термической обработки. Наконец, сталь 1144 относительно легко обрабатывается, ее обрабатываемость составляет 83% от стали AISI 1212.

1144 (Устойчивый эквивалент) Сталь

Минимальные свойства Предел прочности при растяжении, фунт / кв. Дюйм 115000
Предел текучести, фунт / кв. Дюйм 100000
Удлинение 8.0%
Твердость по Роквеллу B95 / C17
Химия Железо (Fe) 97,54 — 98,01%
Углерод (C) 0,4 — 0,44%
Марганец (Mn) 1,35 — 1,65%
Фосфор (P) 0,04% макс.
Сера (S) 0,24 — 0,33%

12L14 сталь без механической обработки

В этот сплав добавлен свинец для улучшения его обрабатываемости.Фактически, его обрабатываемость составляет 160% от стали AISI 1212. Однако добавление свинца снижает прочность этого сплава, хотя обычно он прочнее, чем 1018.

12L14 Сталь для свободной обработки

Минимальные свойства Предел прочности при растяжении, фунт / кв. Дюйм 78,300
Предел текучести, фунт / кв. Дюйм 60,200
Удлинение 10,0%
Твердость по Роквеллу B84
Химия Железо (Fe) 97.91 — 98,7%
Углерод (C) 0,15% макс.
Марганец (Mn) 0,85 — 1,15%
Фосфор (P) 0,04 — 0,09%
Свинец (Pb) 0,15 — 0,35%
Сера (S) 0,26 — 0,35%

A366 / 1008 Сталь

Этот сплав обычно используется для производства холоднокатаной листовой стали «промышленного качества». Он известен своей очень хорошей формуемостью и сравнительно высокой прочностью.Он имеет очень хорошее качество поверхности, которое намного превосходит горячекатаный A36.

ASTM A366 (сплав 1008) Сталь

Минимальные свойства Предел прочности при растяжении, фунт / кв. Дюйм 43,900 — 51,900
Предел текучести, фунт / кв. Дюйм 26,100 — 34,800
Удлинение 42-48%
Химия Железо (Fe) 99%
Углерод (C) 0.08%
Марганец (Mn) 0,6% макс.
Фосфор (P) 0,035% макс.
Медь (Cu) 0,2% мин.
Сера (S) 0,04%

A513 (сплав 1020-1026) Сталь

Этот сплав обычно используется для изготовления труб из DOM. Его более высокое содержание углерода означает более высокую прочность, но более низкую свариваемость и обрабатываемость.

ASTM A513 Сплавы 1020-1026 Мягкая (низкоуглеродистая) сталь

Минимальные свойства Предел прочности при растяжении, фунт / кв. Дюйм 87000
Предел текучести, psi 72000
Удлинение 10.0%
Твердость по Роквеллу B89
Химия Железо (Fe) 99,08 — 99,53%
Углерод (C) 0,18 — 0,23%
Марганец (Mn) 0,3 — 0,6%
Фосфор (P) 0,04% макс.
Сера (S) 0,05% макс.

8620 Легированная сталь

Этот материал отличается твердой внешней поверхностью в сочетании с пластичной внутренней поверхностью для большей прочности.

8620 (хром-никель-молибден) Легированная сталь

Минимальные свойства Предел прочности при растяжении, фунт / кв. Дюйм 97000
Выход, фунт / кв. Дюйм 57000
Твердость по Бринеллю 201
Удлинение 25%
Обрабатываемость 66%
Химия Углерод (C) 0,18 — 0,23%
Марганец (Mn) 0.7 — 0,9%
Фосфор (P) 0,35% макс.
Сера (S) 0,4% макс.
Кремний (Si) 0,15 — 0,35%
Хром (Cr) 0,4 — 0,6%
Никель (Ni) 0,4 — 0,7%
Молибден (Мо) 0,15 — 0,25% макс.
.

Состав / Свойства — SSINA

Нержавеющие стали обладают хорошей прочностью и хорошей устойчивостью к коррозии и окислению при повышенных температурах. Нержавеющие стали используются при температурах до 1700 ° F для 304 и 316 и до 2000 F для высокотемпературной нержавеющей стали марки 309 (S) и до 2100 ° F для 310 (S). Нержавеющая сталь широко используется в теплообменниках, пароперегревателях, котлах, подогревателях питательной воды, клапанах и главных паропроводах, а также в самолетах и ​​космической отрасли.

Рисунок 1 (ниже) дает общее представление о преимуществах горячей прочности нержавеющей стали по сравнению с низкоуглеродистой нелегированной сталью. Таблица 1 (ниже) показывает кратковременное растяжение и предел текучести в зависимости от температуры. Таблица 2 (ниже) показывает общепринятые температуры как для прерывистой, так и для непрерывной работы.

General comparison of the hot-strength characteristics Общее сравнение жаропрочных характеристик аустенитных и ферритных нержавеющих сталей с низкоуглеродистыми нелегированными сталями и полуаустенитными дисперсионными и трансформируемыми ионно-твердеющими сталями.

Со временем и температурой изменения металлургической структуры можно ожидать для любого металла. В нержавеющей стали изменениями могут быть размягчение, выделение карбида или охрупчивание. Размягчение или потеря прочности происходит в нержавеющих сталях серии 300 (304, 316 и т. Д.) При температуре около 1000 ° F, при температуре около 900 ° F для упрочняемых сталей серии 400 (410, 420, 440) и 800 ° F для некондиционных сталей. — закаливаемая серия 400 (409, 430) (см. Таблицу 1 ниже).

Осаждение карбида может происходить в серии 300 в диапазоне температур 800 — 1600 ° F.Его можно избежать, выбрав марку, предназначенную для предотвращения выделения карбида, например, 347 (с добавлением Cb) или 321 (с добавлением Ti). Если выпадение карбида все же происходит, его можно удалить путем нагревания выше 1900 ° С и быстрого охлаждения.

Закаливаемая серия 400 с содержанием хрома более 12%, а также незакалываемая серия 400 и дуплексные нержавеющие стали подвержены охрупчиванию при воздействии температуры 700–950 ° F в течение длительного периода времени. Иногда это называют охрупчиванием при температуре 885 ° F, потому что это температура, при которой охрупчивание происходит наиболее быстро.Охрупчивание 885F приводит к низкой пластичности и повышенной твердости и прочности на разрыв при комнатной температуре, но сохраняет свои желаемые механические свойства при рабочих температурах.

Может показаться нелогичным, что «непрерывная» рабочая температура будет выше, чем «периодическая» рабочая температура для марок серии 300. Ответ заключается в том, что периодическая эксплуатация включает «термоциклирование», которое может вызвать растрескивание и растрескивание образовавшейся высокотемпературной окалины. Это происходит из-за разницы в коэффициенте расширения нержавеющего металла и шкалы.В результате этого образования накипи и растрескивания происходит большее ухудшение поверхности, которое произойдет, если температура будет постоянной. Поэтому предлагаемые температуры периодической эксплуатации ниже. Это не относится к серии 400 (как ферритных, так и мартенситных марок). Причина этого не известна.

Кредит: Эти таблицы были извлечены из следующих брошюр прежних версий;

  • Брошюра Института никеля No.11021 Высококачественная нержавеющая сталь
  • Брошюра Международной молибденовой ассоциации «Практические рекомендации по производству дуплексных нержавеющих сталей»
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *